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Motivation Potential word order choices Evaluation Conclusion

Introduction Preordering source trees

Motivation
▶ Current MT models work well if languages are structurally similar
▶ Difficulties with morphologically rich languages:

− freer word order
− more productive morphological processes
− agreement over long distances
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Preordering source trees

....Peter ..escaped ..from ..the ..police.

Root

.

Sb

.

AuxP

.

Adv

.

AuxA

.

Peter

.

entkam

.

der
case=dat

.

Polizei
case=dat

▶ Source dependency trees are good t for preordering:
− Lerner and Petrov (2013) present two classi er-based dep. tree

preordering models
− Jehl et al. (2014) and de Gispert et al. (2015) preorder dep. trees via

branch-and-bound search
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Preordering source trees
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Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Generating the space of potential word order choices
▶ Both Lerner and Petrov (2013) and Jehl et al. (2014) make only

single-best predictions
▶ We want:

− ALL REASONABLE predictions instead of SINGLE BEST
− More exible model
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Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Multiple predictions:

▶ Bad: Mistakes in order decisions propagate
→ Extract n-best decisions from the model to pass to subsequent model
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Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

=

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

=

▶ Preordered s .

▶ Source dep. tree .
▶ Heads of all families .
▶ Local permutation .

.

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

=

▶ Preordered s .
▶ Source dep. tree .

▶ Heads of all families .
▶ Local permutation .

.

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

=

▶ Preordered s .
▶ Source dep. tree .
▶ Heads of all families .

▶ Local permutation .

.

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

=

▶ Preordered s .
▶ Source dep. tree .
▶ Heads of all families .
▶ Local permutation .

.

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

..PT(π | s, h, τ) = ..P(ψ | s, h, τ) ..PL(πL | s, h, τ) ..PR(πR | s, h, τ)

▶ Pivot decision .
▶ Left order decision .
▶ Right order decision .

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

..PT(π | s, h, τ) = ..P(ψ | s, h, τ) ..PL(πL | s, h, τ) ..PR(πR | s, h, τ)

▶ Pivot decision .

▶ Left order decision .
▶ Right order decision .

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

..PT(π | s, h, τ) = ..P(ψ | s, h, τ) ..PL(πL | s, h, τ) ..PR(πR | s, h, τ)

▶ Pivot decision .
▶ Left order decision .

▶ Right order decision .

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

..PT(π | s, h, τ) = ..P(ψ | s, h, τ) ..PL(πL | s, h, τ) ..PR(πR | s, h, τ)

▶ Pivot decision .
▶ Left order decision .
▶ Right order decision .

.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

..PT(π | s, h, τ) = ..P(ψ | s, h, τ) ..PL(πL | s, h, τ) ..PR(πR | s, h, τ)
.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Producing multiple predictions
Model over possible orders of source words:

P( ..s′ | s, ..τ) =
∏
h..∈τ

PT( ..πh | s, h, τ)

..PT(π | s, h, τ).PT(π | s, h, τ) = ..P(ψ | s, h, τ) ..PL(πL | s, h, τ) ..PR(πR | s, h, τ)
.

...

P(s′ | s, τ)
.

7/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Preordering alogrithm
▶ Produce kP best pivot decisions for all the children in the family
▶ For every of the kP pivot decisions:

− Produce kL best left order decisions
− Produce kR best right order decisions

RIGHT

0 1 2
0 2 1

…

LEFT

0 1 2
0 2 1

…

PIVOT

L L L R R R
L L L R R L

…

Ordered tree family

0 1 2 3 4 5 6
0 2 1 4 4 6 5

…
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Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Preordering with arbitrary non-local features
Making the model more exible:

▶ Bad: Order decisions are local to tree families
▶ Khalilov and Sima’an (2012) show even weak LM helps with

shortcomings

9/17



Motivation Potential word order choices Evaluation Conclusion

Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Preordering with arbitrary non-local features
Decoding:

▶ Non-local features ruin our day...
▶ Cube pruning to the rescue (Chiang, 2007)!

..

P(s′ | s, τ)
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Preordering with arbitrary non-local features
Preordering model:

▶ Standard log-linear model (Och and Ney, 2002):

ŝ′ = argmax
s′

∑
i

λi logϕi(s′)

▶ Where to get the weights?
− PRO: tuning as ranking (Hopkins and May, 2011)
− Scoring functions:

1. Kendall’s τ coefficient
2. Simulate word level MT system, score by BLEU
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Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Preordering with arbitrary non-local features
Local features:

▶ Lexicalized preordering model P(s′ | s, τ) from before
▶ Unlexicalized preordering model PW(π | h, cs) as less sparse backoff

Non-local features:
▶ ngram language models over s′

− words
− part-of-speech tags
− word classes
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Producing multiple predictions Preordering with arbitrary non-local features Applicability of this model

Applicability of this model

▶ General model is applicable to any n-best
preordering model over source trees

▶ Example:
− Preordering model:

Pairwise neural network-based model
(de Gispert et al., 2015)

− Parsing algorithm:
k-best ITG-based CKY parsing
(similar to Tromble and Eisner (2009)).

Ordered tree family

0 1 2 3 4 5 6
0 2 1 4 4 6 5

…
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Do non-local features help? Quality of the space of word order choices Discussion

Intrinsic: Do non-local features help?
▶ Intrinsic evaluation of preordering quality
▶ Language pair English-to-German

Model Kendall’s tau BLEU (ŝ′ → s′)
First-best−LM 92.16 68.1
First-best+LM (cube) 92.27 68.7
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Do non-local features help? Quality of the space of word order choices Discussion

Translation: Quality of potential word order choices
▶ Translation experiments with the space of word order choices
▶ Experiments with top 10 preordering outputs of this model

Distortion BLEU MTR TER

Baseline 7 15.20 35.43 66.62
Best out of k (k = 10) 17.26* 37.97* 62.64
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Do non-local features help? Quality of the space of word order choices Discussion

Discussion
Preordering with non-local features

▶ Integration of LM helps improve preordering quality
− Slight Kendall τ improvement
− BLEU preorder score shows bene ts mostly in small local windows

Quality of the space of potential word order choices

▶ Experiments show signi cant potential improvement contained in
the space

▶ With arbitrary n or lattice, space is small enough to be handled by
subsequent models

16/17



Motivation Potential word order choices Evaluation Conclusion

Conclusion
▶ Source preordering has big limitations but has proven very successful
▶ Our interest: Source-side adaptation models more suitable for

morphologically rich languages

▶ First steps towards this goal:
− Introduced preordering model that can delimit space instead of

rst-best predictions
− More exible model with arbitrary non-local features and cube pruning
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