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Abstract
We propose a novel pipeline for translation into morphologically rich languages which consists
of two steps: initially, the source string is enriched with target morphological features and then
fed into a translation model which takes care of reordering and lexical choice that matches the
provided morphological features. As a proof of concept we first show improved translation
performance for a phrase-based model translating source strings enriched with morphological
features projected through the word alignments from target words to source words. Given this
potential, we present a model for predicting target morphological features on the source string
and its predicate-argument structure, and tackle two major technical challenges: (1) How to
fit the morphological feature set to training data? and (2) How to integrate the morphology
into the back-end phrase-based model such that it can also be trained on projected (rather than
predicted) features for a more efficient pipeline? For the first challenge we present a latent
variable model, and show that it learns a feature set with quality comparable to a manually
selected set for German. And for the second challenge we present results showing that it is
possible to bridge the gap between a model trained on a predicted and another model trained
on a projected morphologically enriched parallel corpus. Finally we exhibit final translation
results showing promising improvement over the baseline phrase-based system.

1 Introduction

Translation into a morphologically rich language poses a challenge for statistical machine trans-
lation systems. Rich morphology usually goes together with relatively freer word order of the
target language, which makes it difficult to predict morphology and word order in tandem.
Technically speaking this difficulty could be due to data sparsity, but possibly also due to mor-
phological agreement between words over long distances. In this paper we explore the idea of
combating sparsity by conducting translation in a probabilistic pipeline (chain rule), whereby
morphological choice may precede lexical choice and reordering.

Whenever the predicate-argument structures of the source and target strings are similar,
we expect that the linguistic information required for determining the morphological inflection
of a plausible translation resides in the source sentence and its syntactic dependency structure.
Consequently, we explore target morphology as a source-side prediction task which aims at
enriching the source sentence with useful target morphological information. Practically (see
Figure 1), after word aligning the sentence pairs, we project a subset of the target morphological
attributes to the source side via the word alignments, and then train a model to predict these
attributes on predicate-argument aspects of source dependency trees (i.e., without the source
word order).
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Figure 1: Overview of the training setup and morphology projection.

Our approach differs from other approaches to predict target morphology (e.g. Chahuneau
et al. (2013)) mainly in that we predict on the source side only. A related intuition underlies
source-side reordering schemes, which have seen a surge of successful applications recently
(e.g. Collins et al. (2005) or Lerner and Petrov (2013)). While syntax-driven source-side re-
ordering assumes that source and target syntax are similar, here we make a weaker assumption,
namely that the predicate-argument structures are similar.

We explore the prediction of target morphology on the source side because we see sev-
eral benefits that could potentially be exploited for further improving machine translation into
morphologically rich languages. Source-side prediction models can capitalize on the much re-
duced complexity of having to represent and process only the input source sentence instead of
a large lattice of target hypotheses. Hence, morphological agreement can be enforced over long
distances by morphological predictions for the full source sentence. Furthermore, while not
pursued in the present work, we hypothesize that the morphological information predicted by
our model can be exploited in the word alignment process.

Our contributions in this paper are three. Firstly, we report experiments to support the
hypothesis that projecting morphology to the source side could be beneficial for translation, and
then present a model for learning to predict target morphology on the source side (Section 4).
Secondly, we address how to automatically learn the set of morphological attributes that fit with
the parallel training data (Section 5). Finally, we introduce methods for integrating this new
information into a machine translation system and evaluate on a translation task (Section 6).

2 Related work

Various approaches have been proposed to the problem of translating between languages of
varying morphological complexity. Avramidis and Koehn (2008) enrich the morphologically
impoverished source side with syntactic information and translate via a factored machine trans-
lation model. In spirit, this paper is closely related to the present work; however, while their dec-
orations are source-side syntactic information (e.g. the noun is the subject), we directly predict
target-morphological properties and learn to select the most relevant ones. A similar approach,
in which source syntax is reduced to part-of-speech tags is used successfully for translation into
Turkish (Yeniterzi and Oflazer, 2010). Following the tradition of two step machine translation
(Bojar and Kos, 2010), Fraser et al. (2012) translate morphologically underspecified tokens and
add inflections on the target side based on the predictions of discriminative classifiers.

Carpuat and Wu (2007), Jeong et al. (2010), Toutanova et al. (2008) and Chahuneau et al.
(2013) propose discriminative lexicon models that are able to take into account the larger con-
text of the source sentence when making lexical choices on the target side. These proposals
differ mostly in the way that the additional morphological information is integrated into the
machine translation process. Jeong et al. (2010) integrate their lexical selection model via fea-
tures in the underlying treelet translation system (Quirk et al., 2005). Toutanova et al. (2008)
survey two basic methods of integration. In the first method, the inflection prediction model is

2



Translation Word order Lexical choice

Training and test decor. Tags MTR BLEU Kendall’s τ BLEU-1

None (baseline) - 35.74 15.12 45.26 49.86

Projected manual set 77 36.34 15.86 45.79 51.30
Projected automatic set 225 36.50 15.73 46.45 51.24
Projected full set 846 36.67 15.96 46.27 51.52

All translation results statistically significant against baseline at p < 0.01

Table 1: Translation with various subsets of projected morphology.

allowed to change the inflections produced by the underlying MT system. The second method is
a two step method, where the MT system translates into target-language stems, which are then
inflected by the inflection model. Chahuneau et al. (2013) create synthetic phrases, i.e. phrases
with inflections that have not been observed directly in the training corpus but have been created
by an inflection model. These synthetic phrases are then added to the training data of the MT
system and marked as such. This enables the MT system to learn how much to trust them.

Finally, Williams and Koehn (2011) add unification-based constraints to the target side of a
string-to-tree model. The constraints are extracted heuristically from a treebank and violations
are then penalized during decoding.

3 Morphology projection hypothesis

A morphological attribute is a morphological property of a word. Each morphological attribute
can assume any of a predetermined set of values, such as {nom, acc, dat, gen} for the
morphological attribute case in the German language. Further, the morphological attributes
are refined based on a set of 9 atomic parts of speech, yielding a set of morphological attributes
of the form noun:case, adj:case, verb:tense, etc.

In this paper, we are interested in the question whether target morphology can be addressed
directly on the source. We hypothesize that projecting target morphological attributes and learn-
ing to predict them on source side trees can be beneficial to machine translation. To test this
hypothesis we initially perform translation experiments with a standard phrase-based MT setup
with and without projected morphological information.1 These experiments provide an indica-
tion for the potential of such an approach. They do, however, not answer the question to what
extent target morphology can realistically be predicted on the source side. This question will
be addressed in the next sections. We perform translation experiments with translation systems
decorated with projected morphological attributes. In these translation systems, the target side
of the test set was processed with a morphological tagger1 and subsets of the resulting morpho-
logical attributes were projected to the source side via alignments. These experiments provide a
conservative indication of the potential of this approach. They are not oracle translation exper-
iments, but simulate an optimal target morphology prediction model. The three systems listed
in Table 1 differ only in the subset of morphological attributes they use.

The experiment is documented in Table 1. We evaluate translation quality with METEOR
and BLEU (Denkowski and Lavie, 2011; Papineni et al., 2002), word order with Kendall’s Tau
(Kendall, 1938) and lexical choice with unigram BLEU. Statistical significance tests are per-
formed for the translation scores (METEOR and BLEU) using the bootstrap resampling method
(Koehn, 2004). The results show that projecting target morphological attributes improves trans-

1Details of the experimental setup are provided in Section 6.3.
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Figure 2: Morphology projection and a source dependency chain.

lation. Improvements result both from better lexical choice and sometimes also better word
order. Using the full set of attributes gives the best METEOR and BLEU scores, but it also con-
tributes significantly to data sparsity. Surprisingly, including only a small, manually selected
subset of attributes gives comparable improvement while significantly decreasing the number
of tags. This manual subset is the set of attributes selected for prediction by Fraser et al. (2012),
who found that it is beneficial to make some morphological attributes part of the translated word
stem instead of predicting them on the target side. The automatic selection is a selection of fea-
tures that an automatic learning procedure determined to be the most beneficial for representing
the language pair. This selection performed equally well in our experiments.

Hence, while better translation performance is achievable by including all attributes, the
prediction task also becomes significantly harder; comparable translation performance can be
achieved with a small, well-chosen set of attributes. The good performance of the manual
set shows that linguistic intuition can be a good starting point for selecting this set; however, a
more empirically beneficial set may be selected by enriching the source side only with attributes
which help in selecting the correct target words. The fact that the automatic set produces a better
METEOR score than the manual set further supports this intuition.2 We highlight the METEOR
scores here, since for the language pair English-to-German, METEOR has higher correlation
with human judgments than BLEU (Machacek and Bojar, 2014). Now that we established the
potential of projecting target morphology on the source side, in the sequel we aim at capitalizing
on this potential. In the next section, we present our model for predicting target morphology on
source trees based on source side dependency chains.

4 Modeling target-side morphology

Since the word order of the source and target language may differ significantly, predicting mor-
phology in a sequential, word-by-word fashion could be inadequate. We think that source syntax
and the source predicate argument structure should be informative for predicting target mor-
phology. Hence, we propose a source-side dependency chain model P (s′m | τ, s) to predict the
morphologically enriched source string s′m given a lexical dependency tree τ of s.

4.1 Source-side dependency chains
A source-side dependency chain is any path from the root of the source dependency tree to
any of its leaf nodes, such as escaped→from→police→the in Figure 2. Every node with a
1-to-1 alignment to a target node is decorated with the target node’s morphological attributes.
A standard morphological tagger, such as the n-th order linear chain CRF model (e.g. Mueller
et al., 2013), would predict the attribute–value vector for each word left-to-right with a history
of n− 1 tags. Modeling with source-side dependency chains instead, gives various advantages:
Besides providing access to the morphological tags assigned to the dependency tree parent and
grandparent nodes, it implicitly encourages morphological agreement between a node and its
n− 1 ancestor nodes. The model benefits from access to the node’s syntactic role, for example

2The difference is statistically significant at p < 0.05.
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Manual Automatic All

5 6 7 5 6 7 5

Strict
50k 68.50 70.13 68.86 70.84 69.73 70.97 58.33

100k 67.08 67.38 67.01 69.33 71.15 69.52 58.65
200k 67.40 67.40 68.55 69.58 69.82 70.06 57.99

Relaxed
50k 72.67 70.36 72.86 74.67 71.42 71.83 62.16

100k 70.01 71.89 69.82 72.63 72.04 72.61 62.18
200k 69.40 69.46 69.99 71.44 70.80 69.83 60.86

Best overall F1 score highlighted in bold.

Table 2: Impact of attribute selection and model parameters on prediction quality (F1 score).

to predict grammatical case. Finally, training data sparsity is alleviated because the dependency
chain formulation allows the extraction of chains from only partially aligned sentences.

4.2 Model estimation
We estimate the source dependency chain model using the general CRF framework. In a linear-
chain CRF model, the probability of a tag sequence y given a sentence x is:

P (y | x) =
exp

∑
t,i λi · ϕi(y, x, t)∑

y exp
∑

t,i λi · ϕi(y, x, t)

where t is the index of a token, i is the index of a feature and λi is the weight corresponding to
the binary feature ϕi(y, x, t). To improve training and inference time, we use a coarse-to-fine
pruned CRF tagger (Mueller et al., 2013). The training procedure is identical to the linear-chain
case, except that we use dependency chains instead of left-to-right chains as training examples.
The dependency chain model’s feature set is based on the set used in the linear chain CRF for
morphological tagging (Mueller et al., 2013). Additionally to the features used by Mueller et al.
(2013), we add the following feature templates: the dependency label of the current token, the
dependency label of the parent token, the number of children of the current token, the source-
side part-of-speech tag of the token, and the current token’s child tokens if they are a determiner
(AuxA), auxiliary verb (AuxV), subject (Sb) or a preposition (AuxP).

4.3 Intrinsic evaluation
To evaluate the quality of the source dependency chain predictions, we perform experiments
on a heldout dataset. Models are trained on a subset of the parallel Europarl data. Evaluation
is performed using the F1 score of the predictions compared to the projected morphological
attributes obtained by automatic alignment of the source and target side of the evaluation set.

Impact of model parameters Table 2 shows prediction performance of the dependency chain
model in relation to a selection of model parameters. For each morphological attribute set,
we train models of order 5, 6 and 7. All models are trained on sets of 50k, 100k and 200k
dependency chains, which are randomly sampled from the training data. In strict training mode,
we require that target words and source words connected by alignment links agree in their coarse
part of speech tags. This restriction enforces a weak form of isomorphism between the source
and the target sentence and hence limits the training set to training instances of potentially
higher quality. In the relaxed setup, no such agreement is enforced.

Up to a certain point, higher order models perform better than models with shorter depen-
dency histories; however, these models are also prone to the issues of data sparsity and overfit-
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ting. The results show that strict training performs worse than the relaxed training regime. The
strict training regime could possibly produce cleaner training examples; however, since it also
enforces a potentially unrealistic isomorphism between the two sentences, those examples may
also be less helpful for the final prediction.

Impact of morphological attribute selection As shown in Section 3, it is possible to reduce
the set of morphological attributes without major losses in translation quality. For the depen-
dency chain model, smaller attribute sets are preferable since they lead to less complex models
and faster training times. Individual attributes may be difficult to predict; hence, the exact
selection of attributes is also important for prediction quality.

Manual Automatic All

Training time, 50k 36m 45m 77m
Training time, 100k 58m 82m 2h51m
Training time, 200k 1h54m 3h5m 6h44m

Tags 77 225 846
Best F1 72.86 74.67 62.18

Table 3: Training times and best scores for the three attribute sets.

Table 3 summarizes training times and prediction performance of the three morphological at-
tribute sets. Larger attribute sets and more training examples lead to longer training times.
Overall, the automatic set produces more accurate results than the manual selection. Our analy-
sis shows that this is largely due to difficult to predict verb attributes, which are included in the
manual selection but are not part of the automatically learnt set. The finding that these attributes
are hard to predict is in line with Fraser et al. (2012), who equally dropped the prediction of
verb attributes in later work.

5 Learning salient morphological attributes

Decorating the source language with all morphological properties of the target language will
lead to data sparsity and will complicate the prediction task. Therefore, it is necessary to re-
duce this set to only morphological attributes which are helpful for a given language pair. We
consider a morphological attribute to be salient if it enables the machine translation system to
perform better lexical selection. It is computationally infeasible to test all possible combina-
tions of morphological attributes in a full machine translation system; hence, we approximate
the machine translation system’s ability to perform lexical selection with a word-based transla-
tion system given by IBM model 1 (Brown et al., 1993). Based on this simplified translation
model, the set of salient features which improve the translation performance can be chosen by
a clustering procedure.

5.1 Learning procedure
Let (s, t) be a pair of parallel sentences in source and target language. IBM model 1 provides an
iterative method for estimating the translation model P (t | s) from a set of parallel sentences.
We add the morphological decoration s′m to this model. The translation model now takes the
following form:

P (t | s) =
∑

s′m∈Θm(s)

P (s′m | s)P (t | s′m)
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where P (t | s′m) is the standard IBM model 1 formulation applied to morphologically
decorated source tokens. In this simple machine translation model, the morphological at-
tributes are directly attached to the source words. For example, if the English token
police is decorated with grammatical case, gender and number, it would be replaced by
the string police/case=dat+gender=female+number=singular. We define the
log-likelihood of a set of parallel sentences X to be:

L(X) ≡ log
∏

(s,t)∈X

P (t | s)P (s) =
∑

(s,t)∈X

logP (t | s) + logP (s)

Let M0 be the initial set of all morphological attributes observed in the training corpus. Our
goal is to find the set Mn ⊆ M0 which maximizes the likelihood of a heldout dataset. By s′m

(i)

we denote the decorated source sentence containing only the morphological attributes in Mi.
We formulate the search for the set Mn as follows:

Mn = argmax
Mi⊂M0

∑
(s,t)∈X

logP (t | s) + logP (s)

= argmax
Mi⊂M0

∑
(s,t)∈X

logP (t | s)

= argmax
Mi⊂M0

∑
(s,t)∈X

log

( ∑
s′m∈Θm(s)

P (s′m | s)P (t | s′m
(i)
)

)

We found the estimates for P (s′m | s) using the full set of attributes M0 to be reasonable,
with sufficient probability mass assigned to the most likely path. Therefore, we approximate
this model by only using the first-best (Viterbi) assignment s′′m. The final, simplified search
objective is therefore:

Mn = argmax
Mi⊂M0

∑
(s,t)∈X

log
(
P (s′′m | s)P (t | s′′m

(i)
)
)

= argmax
Mi⊂M0

∑
(s,t)∈X

logP (t | s′′m
(i)
)

The optimal set of attributes can now be determined with a clustering procedure starting from
the full set of morphological attributes M0. This procedure is reminiscent of Petrov et al. (2006)
since as in their work, we can simulate the removal of a morphological attribute by merging the
statistics of each of its occurrences.3

1. Initialization:

− Estimate the source dependency chain model P (s′m
(0) | s), apply it to decorate the

training and heldout set, producing T0 and H0 (datasets T and H decorated with M0).

− Estimate P (t | s′′m
(0)

): perform 5 iterations of IBM Model 1 training on T0.

2. Start with i = 0.
3. Calculate P (t | s′′m

(i)
) for each sentence pair in the heldout set Hi.

3For example, to simulate the removal of the attribute gender, we would merge the statistics of every occurrence
of the attribute (either gender=male or gender=female). The two tags case=nom+gender=female and
case=nom+gender=male would therefore be merged into one tag case=nom.
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Noun Adjective Verb Other

Manual Auto Manual Auto Manual Auto Manual Auto

gender†

number
case

gender
number
case

gender†

number‡

case‡

declension

gender
number
case

synpos
degree

number‡*

person‡*

tense*

mode*

- - part:negative
part:subpos
punc:type
num:type

† Transferred with lemma. ‡ Propagated from noun. * Dropped in later work.

Table 4: Salient attributes for English–German.

4. Find the attribute m̂ ∈ Mi, such that:

m̂ = argmin
m′∈Mi

( ∑
(s,t)∈Hi

logP (t | s′′m
(i)
)− logP (t | s′′m

(i)\m′

)

)

where s′′m
(i)\m′

denotes a sentence with the attributes in Mi minus attribute m′.
5. Merge all values of m̂ in Ti and Hi, producing Ti+1 and Hi+1.

6. Estimate P (t | s′′m
(i+1)

): Merge the t-tables containing m̂ and perfom IBM Model 1
iteration on Ti+1.

7. Repeat from (3) with i = i+ 1. Stop if no possible merge improves L(Hi).

5.2 Intrinsic evaluation
The complexity of the clustering procedure is O(|M | × k × l2) for k sentences of length l.
In practice, the procedure runs for several hours on a standard machine. Table 4 shows the
attributes determined by the learning procedure. The column Auto shows the procedure’s selec-
tion and the column Manual shows the manually determined set of morphological attributes for
the same language pair, as used by Fraser et al. (2012).

Quality of the selection From inspection of these attributes, we find that our method learns
a reasonable set of salient attributes. The manual and automatic selections differ mainly in
the verb attributes, which our learning procedure removed from the final set. Morphological
attributes in the manual selection which are marked with ‡, are attributes that in the work of
Fraser et al. (2012) were transfered as part of the translated stem by their MT system. The
symbol ‡ marks morphological attributes that they propagated from the noun (for example, an
adjective’s case is copied from the noun it modifies). Finally, the verb attributes, which are
marked with * are used by Fraser et al. (2012) but found to be problematic by Cap et al. (2014b)
and dropped in later work (Cap et al., 2014a). Likewise, inspection of our model showed that
verb attributes perform badly as they may be difficult to predict. Hence, our procedure suc-
cessfully learnt not to model these attributes while retaining the beneficial noun and adjective
attributes.

Granularity of the morphological attributes When simulating the removal of a morpho-
logical attribute with this learning algorithm, all of its values are merged. In some language
pairs, however, it would be useful to merge the individual values of the attributes instead. For
example, from the spelling of German nouns it is usually not recognizable whether the noun is
case=nominative or case=accusative. Hence, the algorithm should ideally be able to
also merge individual values. Since this is a straight-forward extension of our current algorithm,
we plan to evaluate this aspect in future work.
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6 Morphology-informed translation

To leverage the morphology predictions in a machine translation decoder, we integrate this addi-
tional information into the translation model. During training and tuning, the translation model
is decorated with morphological attributes either projected from the target side or predicted by
our dependency chain model.

6.1 Integration of target morphology predictions
In practice, the predicted morphological attributes on the source side can be integrated into
the machine translation system as arbitrary features based on source morphology and target
strings. In our experiments, we opted for a feature representation in which this information
is encoded as source morphology-to-target affix features. We chose this simple representation
because it is generic enough to produce improvements on the one hand and it is not prone
to overfitting on the other hand. For each phrase candidate on the source side, sparse fea-
tures fire for a given sequence of source-side morphology tags and target-side string affixes.
As an example, consider the sentence Peter entkam der Polizei (Peter escaped from the po-
lice) from Figure 2. In this case, the morphological attributes gender (female), number (sin-
gular) and grammatical case (dative) would have been projected from the target to the source
side for the phrase the police/der Polizei. When translating the source segment the police, the
feature gender=fem+number=sing+case=dat X → -er X would fire based on the
predicted morphology. This hint would help the machine translation system choose the correct
German determiner der.4

6.2 Inference strategies
At test time, the morphological decoration of the source sentence needs to be selected. This de-
cision should ideally take into account both the predictions of our source-side dependency chain
model and the content of the phrase table, which may be decorated with projected morphology.

We compare several inference strategies. The major distinction between these strategies is
whether the machine translation system is trained and tuned on projected morphology or pre-
dicted morphology. Training on predicted morphology has the benefit that it lets the MT system
learn how much it can trust the predictions made by the dependency chain model. However, this
method is also more laborious in system development, since it requires retraining and tuning
the whole translation system for every change in the prediction model.

Training and decoding with Viterbi predictions In the first decoding setup, which is similar
to the most common setup used in preordering, we decorate both training and test set with the
Viterbi decorations extracted from the dependency chain model. Specifically, for each possible
dependency chain in the source dependency tree, we preform standard CRF Viterbi tagging
starting from the root of the tree. The full training and tuning set is decorated with these single-
best predicted decorations. System training and tuning is then performed on these sets. During
test time, only the single-best Viterbi prediction is considered by the MT system.

Training on projected morphology and decoding with Viterbi predictions The projected
training setup differs from the previous setup in that the morphological decorations on the train-
ing and tuning set are not predicted but projected from the target side via alignments. During test
time, the decorations are predicted using single-best Viterbi predictions as in the previous setup.
While this strategy is advantageous since it simplifies the system training, the main downside of
this strategy is that it cannot take into account possible shortcomings of the prediction model.

4This feature example is taken form the weights of the system trained with the automatic morphological attribute
set and predicted training and test decoration.

9



Translation Word order Lexical choice

Morph. attributes Training decor. MTR BLEU Kendall’s τ BLEU-1

No morphology - 35.74 15.12 45.26 49.86

Manual selection
Predicted 35.85 15.19 45.43 50.01
Projected 34.63A 14.00A 44.07 48.75

Autom. selection
Predicted 35.99AC 15.23B 45.88 50.27
Projected 35.98AC 15.22C 45.89 50.27

AStatistically significant against baseline at p < 0.05 BStatistically significant against baseline at p < 0.06
CStatistically significant against Manual selection at p < 0.05

Table 5: Translation with predicted test decorations.

At training time, only projected decorations are observed, which might not be realistic when
taking into account the prediction model.

6.3 Evaluation
Having introduced and evaluated the attribute selection process and the prediction of target-side
morphological attributes based on source-side dependency chains, we now turn to the evaluation
of the predicted morphological information within a full machine translation pipeline.

Experimental details We use a standard phrase-based machine translation system (Cer et al.,
2010) with a 5-gram language model and distortion-based reordering (dl=5). Features based
on the source morphology predictions are learnt on either the projected morphology or the
predictions of the source dependency chain model. Experiments are conducted on English–
German. Source-side dependency trees are predicted based on the HamleDT treebank (Zeman
et al., 2012) using TurboParser (Martins et al., 2010). The dependency parser is trained to
produce pseudo-projective dependency trees (Nivre and Nilsson, 2005).5 The system is trained
on the full parallel sections of Europarl (Koehn, 2005) and tuned and tested on the WMT 2009
and WMT 2010 newstest sets respectively.

Monolingual morphological tagging is performed using the Marmot CRF-based tagger
(Mueller et al., 2013). The tagger is trained on the English and German parts of the HamleDT
treebank. The morphological attributes of both languages follow the Interset standard (Zeman,
2008), which contains 45 unique attribute vectors (tags) for English and 958 for German.

Discussion Table 5 shows the outcomes of using the inference strategies presented in Sec-
tion 6.2. We evaluate translation quality with METEOR and BLEU (Denkowski and Lavie,
2011; Papineni et al., 2002), word order with Kendall’s Tau (Kendall, 1938) and lexical choice
with unigram BLEU. Statistical significance tests are performed for the translation scores (ME-
TEOR and BLEU) using the bootstrap resampling method (Koehn, 2004).

The results show that both attribute selections show improvements over the baseline when
training and testing on predicted morphology. On the other hand, when training on projected
morphology and performing Viterbi predictions, a visible gap between the manual set and the
automatic set can be observed. This gap indicates that with the automatic set, the predictions by
the dependency chain model are closer to the projected predictions so that the machine transla-

5Projectivization was performed using MaltParser version 1.8; http://www.maltparser.org/.
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tion system learns realistic weights for the prediction part. Additionally, the system based on the
automatic selection produces a significantly better METEOR score than the system using the
manual selection. As in the experiments with projected morphology, the results of this evalua-
tion indicate that the improvements stem from both word order choices as well as better lexical
selection. In terms of time performance, we found that the additional information does not sig-
nificantly affect the speed of the translation system. Viterbi decoding for predicting the target
morphology is efficient and as the information is passed to the MT system as sparse features, no
additional complexity is added. While we have focused on the language pair English–German,
the methods presented in this paper are applicable to any language pair. We therefore aim to per-
form additional experiments for other morphologically-rich target languages, such as Turkish,
Arabic and Czech.

7 Conclusion

In this paper, we have explored the novel approach of target morphology projection. After
testing the idea empirically, we have put forward three proposals to realize this idea: First, we
introduced the dependency chain model for predicting arbitrary target morphology attributes
based on source dependency trees. Second, we introduced a learning procedure to determine
a language pair’s set of salient morphological attributes. And finally, we have introduced and
compared various strategies for integrating this new information into a machine translation sys-
tem. The experiments we have performed have provided us with important insights. They have
demonstrated that projecting a small subset of morphological attributes to the source side can
provide major translation improvements, while reducing the complexity of prediction. Further-
more, the approach for learning the useful subset performs well based both on the intrinsic
evaluation and the empirical results during prediction and translation. Given that previous work
has found it rather difficult to achieve improvements in German morphology, we consider the
improvements in METEOR score and the modest improvements in BLEU score encouraging.

While the prediction performance of the dependency chain model leaves room for improve-
ment, we submit that our experiments sufficiently demonstrate the potential of this approach.
We plan to further improve the prediction performance of the dependency chain model with
extensions such as the use of (bilingual) word embeddings that could help resolve ambiguous
cases. In addition, to let the machine translation system better exploit this new knowledge,
deeper integration (e.g. into the language model) is necessary. Both ideas constitute the main
topics for extending the current work in the future.
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